
Computer Science

Simple, Efficient Object Encoding using Intersection
Types

Karl Crary

January 1999

CMU-CS-99-100

!-

1 W

■g&00!Bv*

%ss^s^
feflfSP'

,,..,**!?fS'

.^f0^

^CQtJAIffllEKffB0™1

»Catoegie
'ellon

UflSS^

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Simple, Efficient Object Encoding using Intersection
Types

Karl Crary

January 1999

CMU-CS-99-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also published as Fox Memorandum CMU-CS-FOX-99-01

Abstract

I present a type-theoretic encoding of objects that interprets method dispatch by self-application
(i.e., method functions are applied to the objects containing them) but still validates the expected
subtyping relationships. The naive typing of self-application fails to validate the expected subtyping
relationships because it is too permissive and allows application to similarly typed objects that are
not self. This new encoding solves this problem by constraining methods to be applied only to self
using existential and intersection types. Using this typing, I give a full account of objects including
self types and method update. The typing constructs used in this encoding appear to be quite rich,
but they may be axiomatized in a novel, restricted fashion that is metatheoretically simple.

This research was sponsored by the Advanced Research Projects Agency CSTO under the title "The Fox Project:
Advanced Languages for Systems Software", ARPA Order No. C533, issued by ESC/ENS under Contract No.
F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

DISTRIBUTION STATEMENT A

Distribution Unlimited

Keywords: Object encodings, intersection types, type theory.

1 Introduction

Object-oriented programming languages usually provide built-in primitives for object-related com-
puting. However, there is also considerable interest in explaining such object primitives in terms of
type-theoretic constructs. Type-theoretic accounts of object systems are interesting for two main
reasons: First, they provide a flexible framework in which to analyze object-oriented features and
to explore combining them with other powerful programming features. Second, a type-preserving
compiler must implement object features in terms of more basic, typed primitives. To satisfy both
these needs, a type-theoretic object encoding must be faithful to the intended semantics (static and
dynamic) of the object system, and must also be computationally efficient.

The self-application semantics [17] provides the most natural explanation of the operational be-
havior of objects whose methods have access to self. In the self-application semantics, method
invocation is performed by extracting the desired method from an object and then applying that
method to the entire object as well as the method's arguments. Unfortunately, the naive typing of
the self-application semantics does not justify the desired typing rules for objects; in particular, it
blocks the expected subtyping relationship that objects with more methods may be used in place
of objects with less.

This difficulty with self application has led to several different proposals for type-theoretic encodings
of objects. Recursive record interpretations [9, 11, 8] perform applications to self at the time objects
are constructed, instead of at method invocation, resulting in records of methods where self is
hardcoded. In existential interpretations [6, 22, 16], the self argument provides some hidden state
of an object, but no access to methods; access to self methods is again settled before before object
construction. Although each of these proposals supports basic functionality for object-oriented
programming, none provide the full flexibility of the self-application semantics. For example, none
allow methods to be updated once objects have been constructed.

To solve this problem, Abadi, Cardelli and Viswanathan devised an alternative interpretation [3],
which retains the expressiveness of the self-application semantics. Their interpretation views objects
as records containing methods and a self field. The type of the self field is hidden, as in the
existential interpretations, but is constrained to be a subtype of the full object's type. When
objects are constructed, the self field is filled with a pointer to the object, and the pointer in that
field is supplied to methods at method invocation, providing the essence of self-application.

Abadi et al. 's device provides a satisfactory model of objects in type theory. In particular, it justifies
all the desired typing rules for objects and still allows the flexibility of the self-application semantics
(such as method update). However, as an object encoding for use in a practical compiler, it results
in some undesirable inefficiencies. As noted above, when invoking a method, the self argument is
satisfied not by the object itself, but by the contents of a self field of the object. This means that
a pointer to self must be stored in every object, which costs space, and that the pointer must be
extracted whenever methods are invoked, which costs time.

Recovering Self-Application Operationally speaking, these overheads are easily avoided by
adopting the self-application semantics, and have been in untyped object systems. In a typed
setting, the difficulty has been in assigning types to objects in a manner that makes possible the
desired operations of an object calculus, particularly subtyping. In this paper I show that objects

interpreted by self-application can be expressed in type theory without any additional overhead.
The paramount concern is that the operational behavior of objects be undisturbed in any way by
the typing machinery that is wrapped around it.

A secondary contribution of the paper is a careful analysis of the operational issues that make
the various typing mechanisms necessary. For example, I show that the naive typing of the self-
application semantics does not work because it is too permissive, and fails to adequately state the
operational behavior of objects. In particular, it allows methods to be applied, not only to self
(and self-application dictates), but to any object of the same type. However, that type may be
a supertype of the object's original type, and therefore may be missing methods present in the
original type. This means that methods cannot count on being supplied with all the methods they
expect, even though those methods are present in the object itself.

The solution arises by devising a type that does express the operational behavior of objects, by
restricting the type so that methods are applied only to self. This is done using an existential type
to abstract the type of self, and an intersection type to show that the object is both self and a
collection of methods operating on self. More generally, the methodology is to use types to precisely
specify the allowable interfaces to objects; in several circumstances problems will be seen to arise
if types are assigned too loosely.

The ambient type theory required for this encoding appears at first to be very rich, but I show
that little of that expressiveness is required, and that the encoding may be performed in a simple
and quite tractable type theory. At its core, neither bounded quantification nor higher-order type
constructors are necessary (although there are good reasons to add both). The intersection type
used is also restricted enough to admit a simple metatheory.

Overview The paper is organized as follows: Section 2 develops the basic ideas of the object
encoding and presents the type theory that serves as the target of the encoding. Section 3 extends
the encoding to support self types and method update. Section 4 compares the encoding in detail
with other type-theoretic object encodings. Concluding remarks appear in Section 5.

In the interest of brevity, this paper assumes basic familiarity with the Girard-Reynolds polymorphic
lambda calculus [14, 23], with subtyping, with recursive types, and with existential types for data
abstraction [18]. Some familiarity with the other object encodings discussed above will also be
helpful, but is not required.

2 Basic Developments

We begin by examining what makes the naive typing for self-application fail. By way of example,
consider the object types Point and ColorPoint shown below.

Point = H getx : int |}

ColorPoint = {| getx : int, getc : color [}

Since ColorPoint has all the methods of Point, we desire that ColorPoint be a subtype of Point.
Unfortunately, this will not prove to be the case with the naive typing for self-application. In the

naive typing, each object is encoded as a recursive record in which each method takes an entire
object as an argument:

Point = ^a.jgetx : a —)■ int}
= {getx : Point -> int}

ColorPoint = ^«.{getx : a —>■ int,getc : a-> color} ^ '
= {getx : ColorPoint -> int, getc : ColorPoint ->■ color}

Suppose cpt is a ColorPoint. In order for cpt to be a member of Point, the getx field of cpt
must be typeable as Point —> int. This is not the case; the getx field of cpt requires its argument
be a ColorPoint, not just a Point. Consequently, ColorPoint is not a subtype of Point using the
naive typing.

However, in the self-application semantics, the argument to the getx field is not just any object
of type Point. The argument will always be the object cpt itself, which is not just a Point but
is also a ColorPoint, as desired! Therefore, the intended subtyping should work out so long as
an object's methods are always applied to the object itself, as promised by self-application. The
problem with the naive typing is that it is too permissive; it allows applying methods to objects
that are not self. In other words, the promise of self-application is broken by the naive typing.

What we need, then, is a typing mechanism that can require methods to be applied to a particular
object. This is achievable using abstraction. Consider the existential type 3a. ax(a-^r). This type
arises in typed closure conversion, where a is the (unknown) type of the environment, and a—>■ r is
the type of code. Since the type a is unknown, nothing can be done with the environment except
pass it to the code, and likewise the code cannot be called without presenting the environment as
an argument.1 This is a general mechanism; we may require that a function be called only with
a specific argument simply by abstracting the type of the argument and packaging it with the
function.

In order to ensure methods are called with the appropriate argument, we abstract the type of the
argument and package it with the record of methods. But for self-application, the argument and
the collection of methods are one and the same. Thus we package them using an intersection type
to indicate that the same object is both the argument and the record of methods:

Point = 3a. a A {getx : a —> int}
ColorPoint = 3a. a A {getx : a —» int, getc : a -> color}

Informally, a term is a member of the intersection type T\ A T2 if it a member of both rx and ri.
For this encoding it is easily shown that ColorPoint is a subtype of Point, as desired. To invoke
a method, we just unpack the existential, extract the desired method and apply it to the object.
For example, let the invocation of method £ from object o be denoted by o < £ and suppose o is a
Point;then

o < getx = unpack [a, x] = o in (a;.getx) x

where r.£ denotes the extraction of field £ from record r. Note that o<getx has type int, as desired.

More generally, suppose O is {| £x : Ti,..., £n : rn [}. Then O is interpreted as:

O = 3a. a A {£\ : a —>■ T\, .. .,£n : a—>■ rn}

1 Throughout this paper, I assume call-by-value evaluation; therefore the argument cannot be spoofed with a
nonterminating expression of type a.

I will refer to this encoding as the OEI encoding, for "objects using existential and intersection
types," following the terminology of Bruce et al. [7]. In the remainder of this paper, I will explore
the expressiveness of this encoding by showing how it deals with various issues in object-oriented
programming. The OEI encoding will not prove to be sufficient to support self types or method
update, but in Section 3 I will introduce a similar encoding (called OREI) that is.

2.1 Object Construction

Let O* be the naive encoding for the object type O:

O* = not.{l\ : a-)-ri,...,4 : a^Tn}

I will refer to members of O* as pre-objects. Suppose po is a pre-object of type O*. By unwinding
the recursive type in O* once, po can also be given the type {£i : O* -¥ n,.. .,£n : O* -> rn}.
Therefore, po can also be given the intersection type

0*A{e1:0*^T1,...,en:0*-*Tn}

and so an object of type O is constructed simply by hiding O*:

pack po as 3a. a A {£\ : a ->• TU .. .,£n : a -> rn} hiding O*

Moreover, this packing operation has no run-time effect, provided we assume the implementation
erases types at run time.

2.2 A Simplified Type Theory

In the preceding development I have been using quite a rich type system. For example, intersection
types are a critical part of my object encoding. On their own, intersection types are fairly innocuous,
but combining them with bounded quantification leads to serious difficulties for type checking and
semantics [19, 20]. I do not use bounded quantification in this paper, but there are many good
reasons to include it in a practical object system.

For another example, when packaging pre-objects in Section 2.1, I implicitly made use of a rule
stating that terms belonging to the recursive type /j,a.r also belong to the once-unrolled version
of that type r\ßa.T/a\. This rule is natural according to the intuitive semantics of the recursive
type, but it makes type checking considerably more difficult [4] and it restricts the possible models
of the type theory [21]. The usual solution to this difficulty is to use explicit fold and unfold
operations between fxa.T and r[/j,a.r/a], but this solution cannot be applied directly in my setting:
If e has type fia.T then unfold e has type T[fia.T/a], but neither e nor unfold e has the required
type \IOL.T A T\JXO..TIoi\.

The difficulties resulting from the richness of the type system may lead the reader to wonder about
the practical applicability of the OREI encoding. Fortunately, subtyping is useful primarily as
a convenience for the programmer, and is not vital in the intermediate languages of a compiler.
Therefore, the target language of my object encoding dispenses with subtyping and instead uses
explicit retyping coercions.

The target language, called Fc, is formalized in Appendix A. The novelty of Fc lies in its syntactic
class of coercions. Coercions are separated out from ordinary terms because coercions are guar-
anteed to have no run-time effect; they serve only to change the type of a term from one type to
another. When the compiler ultimately generates machine code, it may simply drop the coercions.
All the typing mechanisms of this paper are performed using coercions, and therefore it is clear
that the operational behavior of objects is identical to what it would be in an untyped setting. In
particular, no efficiency is sacrificed to achieve strong typing.

In Fc, members of intersection types are introduced by a pair of coercions. If the coercions C\ and
c2 coerce r to T\ and r2, respectively, then the compound coercion (ci,c2) coerces r to T\ A r2.
Thus, a member of an intersection type is a single term with two different views.2 The problem
with recursive types discussed above is then handled by coercing a recursively typed term with
both an identity coercion and an unfold coercion.

3 Further Developments

3.1 Self Types

An important feature for an object encoding is to support methods whose type involves the "type
of self." For example, the Point object type from before may be augmented with methods that
functionally set or increment the point's position, returning a new point:

_ . def n • n Point = || getx : mt, setx : int -> a, mcx : a [} as a

In the above type, the type variable a stands for the type of self ("as a" serves as the binding
occurrence for the self type variable). Thus the setx method takes an integer and returns a new
object of type Point.

When interpreted using the OEI encoding, what we desire is a solution to the equation:

Point = 3ß.ß A {getx :/?-)• int, setx :/?->■ int -» Point, incx : ß -» Point}

The solution is obtained in the natural manner, by wrapping an additional recursive type around
the encoding:

Point = fj,a. 3ß.ß A {getx : /?-*■ int, setx : ß-t int ->■ a, incx : /?-»■ a}

More generally, suppose O is {| l\ : TX ,..., £n : rn [} as a. Then O is interpreted as:

Ö tf m.3ß.ßA{l1:ß^TX,...,ln:ß-+Tn\

Note that the recursive variable a may appear free in r,-. I will refer to this encoding as the OREI
encoding, for "objects using recursive, existential and intersection types."

Dimock et al. [13] make use of a similar idea by defining intersections to contain pairs, the components of which
are required to be identical when types are erased.

3.2 Method Update

If a method is to return a new object of self type, it must do so by updating some of the methods
(or by returning the original object unchanged). Some methods will do this simply by calling other
methods; for example, the incx method may create a new point by calling the setx method. Other
methods will do so directly; for example, the setx method is intended to return a new object with
an updated getx method.

We may implement such a point by

mgetx

Wsetx

T^incx
pt

Point -» int = Ao:Point*.12
Point -» int -» Point = Ao:Point*. Ax:int. o ■ getx t= (Ao':Point*. x)
Point ->• Point = Ao:Point*. (o< setx)(o< getx + 1)
Point = -Q getx = mgetx, setx = msetx, incx = mincx |}

where -Q l\ = e\,..., tn = en [} denotes object construction and o ■ £ t= e denotes the updating of
object o by replacing its I method with e.

Method update is implemented simply by installing the new method in the appropriate field:

m'setx : Point*-» int-»Point* = Ao:Point*. Ax:int. {getx = Ao':Point*. x,
setx = o.setx
incx = o.incx}

Note that the function msetx takes and returns pre-objects of type Point*, rather than objects.
The pre-object result can (and generally would) be coerced to an object of type Point as discussed
in Section 2.1. However, the argument necessarily must be a pre-object. Terms of object type (that
is, O as opposed to O*) may not have methods updated. This is clear from an inspection of the
object type O, but there is also a simple operational reason: Once in object type, it is impossible
to determine the object's original width; any update could drop methods on which other methods
depend.

Consequently, the object calculus being compiled must distinguish between two sorts of object type:
"actual" object types and pre-object types. Pre-objects may have methods updated and objects
may not. However, pre-objects must be promoted to become objects before any subtyping may be
used.

3.3 Dedicated Update Methods

Unlike the encoding presented here, the object encoding of Abadi et al. supports updating of
methods, even after subtyping is used. It is able to do so by adding dedicated update methods to
objects. For each ordinary method in an object, their encoding adds a second "update method"
that serves only to update its corresponding method. In essence, update methods make method
update possible after subtyping because they can remember the record's original width.

Update methods may be used in the OREI encoding as well. I show here how they can be written
in the object calculus by hand, but the encoding could add them automatically (as in Abadi
et al.) as well. Let the type of pre-objects be written !{j^i : T1,...,£n : rn [} as a. Suppose a
method f oo has type r, where r does not make use of the self type variable. We may make f oo

updatable after subtyping by adding an extra method update _foo resulting in an object of type
{| f oo : r, updatejfoo : (a —> r) —> a,... |} as a. The method update_f oo is implemented by:

updatejfoo = Ao:PreFooType. A/:(FooType -+T).O- f OO £= /
where FooType = {| f 00 : r, updatejf oo : (a -> r) —> a,... |} as a
and PreFooType = !{| foo : r, updatejf oo : (a —>■ r) —)■ a,... |} as a

This simple encoding will serve to update many methods, but it depends essentially on the fact that
r does not use the self type variable a. If a appeared free in r, then it would appear negatively in
the type of the updatejf oo method, and that negative appearance would prevent subtyping from
working properly.

Operationally, the problem is that arguments to the updatejfoo method (themselves functions)
that return the self type might create entirely new objects, instead of producing their results using
their own self arguments. Those new objects could then be missing fields expected by other methods
of the present object.

We can resolve this problem by adding bounded quantification to the system, and using it to require
that the arguments to an update method produce their results uniformly, that is, only by using
their self arguments. Consider the type of updatejfoo in:

{| foo : T, updatejfoo : (Vß<a. ß ->■ T[ß/a\) ->• a,... [} as a

Since ß is abstract, a prospective new method (i.e. an argument to updatejfoo) cannot create
an object of type ß from scratch, it must construct it using its self argument (of type ß) and the
operations on that self argument available by virtue of being a subtype of a. In other words, the
new method must produce self-typed results using only its self argument.

With this type, subtyping is permitted because a appears only positively. (A similar device is used
by Abadi and Cardelli [2].) Note that in order to write any interesting uniform functions, the object
calculus must support structural rules for method invocation [3], where, for example, if e has type
ß < {| foo : a,... D as a, then e < foo has type ß, rather than the looser type {| foo : a,... |} as a.3

3.4 Formalization

The discussion so far gives an informal account of the OREI object encoding. We make all this
precise by defining a object calculus and giving a type directed translation from that object calculus
into the target language Fc.

The syntax for the object calculus appears in Figure 1. To review the notation, {| £{ : T^%=l-n^ |}asa
and !{|4' : r^*=1-""J [} as a represents the types of object and pre-objects, respectively. Pre-object
types are subtypes of object types. The term { ^,- = ej'=1",ri^ [} creates a pre-object (and therefore
an object, by subtyping), the term e < £ invokes method £ of object e, and ei • £ $= e^ updates
method £ of pre-object e\ by e^. The remaining notation is standard.

Alternatively, we can obviate the need for structural rules and still write uniform update methods by adding
higher-order bounded quantification and quantifying over type operators that are pointwise subtypes of the operator
corresponding to a [22].

typos T ::= a \ int | {£\ : Ti,..., £n : rn} | T\ —> r2 | Va.r |
{| ti : n,..., £n : Tn D as a | !{| £1 : n,..., £n : rn |} as a;

icnns e ::= a; | i [{4 = ej,.. .,£n = en} \ el \ Xx:r.e \ e\ei \ Aa.e
eiT] \ 1\ ti = e1,..., £n = en $ \ e < £ \ ei ■ £ t= e2

contexts T ::= e | r[a] | T[x : r]

Figure 1: Source Syntax

Typ<-> in«' translated from the source to target language as discussed above:

\a
| int

In -> T2

\\fa.T

|{|/,:r,['=,-n^asö

\l\\(, :r,i'=l-n]|}asa

= a
= int

= {£t : |r#=1-"]}
= N-Hr2|
= Va.|r|
= fxa. 33. ß A {£i : ß -> |ri|[j'=1-n]} (where ß is not free in r,-)

= fia. {ti : (a -»• |r,-|[|{K,- : rt-[«"=1-nl |} as a\/a]f=1-n]}

In t lie interest of brevity, we present the static semantics of the source language and the translation
into the target language simultaneously. Appendix B gives rules governing three judgements:

1. rhsr type indicates that r is a well-formed source type (in context T).

2. r hs e : r ~> e' indicates that source term e has type r, and that e' is its translation into the
target language.

3. r \-s 7"i < r2 ~>- c indicates that the source type T\ is a subtype of the source type r2, and
that c is a target language coercion witnessing that subtyping.

The source language judgements T \-s e : T and T hs ri < r2 have the obvious meanings, and their
rules are obtained by dropping the ~* e and ~*- c suffixes from the translation rules.

With the translation formalized, the natural type correctness result is easy to show:

Proposition 3.1 Let the context encoding \T\ be defined by:

\T[a]\ = \T\[a]
\T[x:r}\ = |r|[s:|r|]

Then:

1. IfT\-sr type then \T\ r-T \T\ type.

2. IfY hs e : r ~*- e' then \T\ hT e' : |r|

Source ^£l:ri(a^=1-n^3sa

OE 3ß. ß x {£t ß->Tl(ßf=^}
ORE fia. 3ß. ß x {£i ß^rt{af=1-^}
ORBE fj,a. 3ß<a ■ ßx{£i ß^Ti{ßf=i-n\}

OREI im. 3ß. ß A {£t
ß^Ti{af^-n\}

Figure 2: Encodings of Object Types

3. IfT\-sTi<T2-^c then \T\ \-T c: \T\\ \T2\

With a formalized operational semantics, dynamic correctness of the translation can also be shown,
using a straightforward (and uninteresting) simulation argument.

In the interest of simplicity, the source language does not support bounded quantification. As
we have seen, bounded quantification is not necessary for many basic object-oriented features.
However, there are many excellent reasons to support bounded quantification. For example, as
discussed in the previous section, bounded quantification (in conjunction with structural rules or
higher-order type constructors) makes it possible to write dedicated update methods for methods
using self type. It is not difficult to extend the translation to support bounded quantification using
a variant of the Penn interpretation [5, 12].

4 Comparisons

The OREI encoding discussed in this paper is closely related to three other abstraction-oriented
object encodings: the OE encoding of Pierce, Turner and Hoffman [22, 16], the ORE encoding of
Bruce [6], and the ORBE encoding of Abadi, et al. discussed previously. Bruce et al. [7] cast each
of these encodings in a common framework, and explore the interrelations between them.

The OREI encoding and each of the three encodings from Bruce et al. encode object types in
ways that appear fairly similar. Figure 2 summarizes the encodings of object, types. However,
these syntactic similarities mask significant differences in the operational behavior of the various
encodings. In this section, I review the discussions from Bruce et al. and show how OREI fits into
the picture.

The four abstraction-oriented object encodings can be arranged in order of the degree to which
they specify the form that the "state" of an object must take, (as shown in Figure 3):

The simplest of the four is OE, which views an object as a pair, consisting of a state having
an arbitrary type and a collection of methods operating on states. Methods that functionally
update an object do so by returning a new state. Since that new state is only part of the
complete object, the caller has the responsibility of repackaging it to form a complete object
by pairing it with its methods and existentially sealing the pair.

unspecific OE ORE

ORBE

specific OREI

Figure 3: Object Encoding Relationships

2. The ORE encoding is like the OE encoding, except that it moves the burden of repackaging
the state from the caller to the method. Consequently, method types must mention the full
type of the object, and accordingly objects are given recursive types. Despite this difference,
the type of the state itself in the ORE in still completely unspecified, as in the OE encoding.

3. The ORBE encoding unifies the OE and ORE encodings by requiring that an object's state be
an object itself, thereby eliminating the distinction between returning a state and returning an
object. This requirement is imposed in the type by using bounded quantification to indicate
that the type of the state is a subtype of the full object's type.

4. The OREI encoding goes one step further than the ORBE encoding, specifying that the
object's state is not just any object, but is the selfsame object itself. This makes OREI the
most specific of the four, entirely specifying the object's state.

A shallow examination of the type encodings would suggest that OREI bears the greatest resem-
blance to the ORE encoding, since they differ only in the type operator used to join the methods,
product or intersection. However, the preceding discussion reveals that the similarity is deceptive;
operationally the two encodings are very different. For example, object states in ORE are entirely
unspecified, while object states in OREI are entirely specified.

Operationally, OREI is most similar to the ORBE encoding. Certainly ORBE is closest in the
specificity spectrum, but more importantly, ORBE is closest in expressiveness, such as the ability
to support method update. The principal difference between the two is the one discussed above:
ORBE's type allows its state to be any object. Consequently, even though an object's state will
be the object itself in common usage (at least in a noncoercive interpretation of subtyping), the
possibility that it could be another object makes it impossible to take advantage of that fact. As
discussed in the introduction, this means that the object must use an extra word to store the state
pointer, and for every method invocation must perform and extra dereference to obtain that state
pointer.

4.1 Closure Conversion

A variant of the Abadi, et al. encoding proposed by Viswanathan [24, 2] hearkens back to the
recursive record encodings [9, 11, 8] by hiding the state within method functions, but uses dedicated

10

update methods to support method udpate. At high-level phases of a compiler, the recursive
record encodings and Viswanathan's encoding appear to eliminate the extra state pointer, but a
consideration of function closures reveals that this is not so.

A function having free variables is implemented by transforming it into a closure, which is a pair
the first component of which is an environment containing the function's free variables, and the
second component of which is the function's code (abstracted over the environment). Hiding the
extra state pointer with a method function merely places it within the environment, where it still
uses an word and an extra dereference is still required to obtain it.

Moreover, an obvious optimization to perform after closure conversion is to merge methods' envi-
ronments into the object, thereby eliminating an extra level of indirection. By appending methods'
free variables to the end of an object, we can (in most cases) eliminate the need to allocate closures
for methods. The extra fields can then be forgotten using subtyping. With such an optimization
in play, the extra state pointer previously hidden within the function now appears in the object
again.

4.2 Full Abstraction

The main purpose to Viswanathan's encoding is as a step on the way to a fully abstract object
encoding, a property not enjoyed by ORBE. Full abstraction in compilation is not only of theoretical
interest; in systems where programmers may write code in lower-level intermediate languages,
it is desirable that abstraction properties in the source language be protected in the lower-level
intermediate languages as well [1]. An interesting question, then, is whether the OREI encoding is
fully abstract.

A formal proof is left as future work, but we may conjecture that OREI is fully abstract for
the object calculus without pre-objects, but not with pre-objects. This is based on the following
observations: We expect that the encoding will be fully abstract if no "useful" operations can be
performed on encoded terms, that cannot be performed on the original terms.

• The action of the encoding on integers, records and functions is trivial, so clearly no additional
actions are made possible in those cases. The interesting cases are objects and pre-objects.

The sole operation available on objects is method invocation. We wish to argue that nothing
can be done with an encoded object but invoke methods. An encoded object provides two
things (actually, one thing viewable two ways): a member of an abstract type ß, and a
collection of functions with domain ß. A member of abstract type by itself is useless. The
functions, on the other hand, can be called, but only by providing a member of ß as an
argument. The object itself is the only available member of /?, and that function call is
precisely what is meant by method invocation.

The operations available on pre-objects are method update and method invocation. However,
in an encoded object, the method functions can be extracted, and from there many things
are possible. Therefore, for the encoding to be fully abstract, it must be possible to extract
a method function from an unencoded pre-objects. Following Viswanathan [24], we can very
nearly create a function with identical behavior to a method function. That function takes

11

a new pre-object argument, updates all the methods of the old pre-object with the new
pre-object's methods, then invokes the method in question and returns its result.

out(o-e) d= \x. ((o ■ £i t= out(x •£{))■ £2 t=out(x-e2) ■■■)<£

The problem is whether to update the method being extracted. If it is not updated, the
object created within out does not have quite the right behavior. If it is updated, then the
field of interest is obliterated.

It appears that this problem could be solved using the same device as Viswanathan [24], to
alter the type of pre-objects so that methods cannot depend on their own field. With such
a change, the function out works as intended, and the modified encoding appears to be fully
abstract.

It is worth pointing out that, although pre-objects provide additional functionality over the object
calculus used by Viswanathan (i.e., non-uniform method update), the (conjectured) full abstraction
of OREI minus pre-objects is not a comparable result to Viswanathan's because of a difference in the
treatment of method update in the source calculi. In the OREI object calculus, dedicated update
methods are just ordinary methods written to perform method update; such fields can be filled
with other non-updating methods so long as the types are the same. In contrast, in Viswanathan's
calculus, dedicated update methods are built in and only do update, and consequently a fully
abstract encoding must ensure that such methods actually do update. Preventing spurious update
methods is the primary issue Viswanathan's encoding addresses.

5 Conclusion

The OREI encoding is the first type-theoretic object encoding to use the efficient self-application
semantics to explain objects' operational behavior and also to give objects types that justify the
intended subtyping relationships. The enabling observations are that the typing of objects must
enforce that objects are used only in a self-applicative manner, and that such enforcement may be
done simply, using abstraction and restricted intersection types.

Unlike other object encodings that use intersection types [10, 15], the OREI encoding makes no
use of the usual subtyping behavior of intersection types, that r A r' < r (in the Fc formalism
that 7Ti : T AT' => T). What is used by the OREI encoding is the import of intersection types
for controlled information hiding. Existential types are used to hide type information by replacing
the information to be hidden by an existentially quantified type variable, but this sort of hiding is
all-or-nothing. Using existential types alone, data can be given an abstract view, but cannot be
given multiple abstract views without making copies. Intersection types allow greater control over
information hiding by making it possible for data to be given multiple different views simultaneously.
In other words, intersection types allow data to be placed in the intersection of two views. This
application need not have anything to do with subtyping.

Although the axiomatization of Fc allows the intersection type to enjoy a considerably simpler
metatheory, one should not conclude that Fc's intersection type is the same as a product type.
One can give Fc a semantics in which coercions are ordinary functions, and in such a semantics the

12

intersection and product types are indeed the same. However, the preferred semantics is a type-
erasure operational semantics in which coercions are merely retyping operators with no run-time
effect whatsoever. In that semantics, intersection and product types are clearly different. Moreover,
it is in that semantics that the efficiency goals of this work are realized. Fortunately, it is also that
semantics that is most easily implemented by a compiler.

References

[1] Martin Abadi. Protection in programming-language translations. In Twenty-Fifth Interna-
tional Colloquium on Automata, Languages, and Programming, July 1998.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects, chapter 18.3.5. Springer-Verlag, 1996.

[3] Martin Abadi, Luca Cardelli, and Ramesh Viswanathan. An interpretation of objects and
object types. In Twenty-Third ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 296-409, St. Petersburg, Florida, January 1996.

[4] Roberto Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems, 15(4):575-631, 1993.

[5] Val Breazu-Tannen, Thierry Coquand, Carl A. Gunter, and Andre Scedrov. Inheritance as
implicit coercion. Information and Computation, 93:172-221, 1991.

[6] Kim B. Bruce. A paradigmatic object-oriented programming language: Design, static typing
and semantics. Journal of Functional Programming, 4(2):127-206, April 1994.

[7] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing object encodings. In
Theoretical Aspects of Computer Soßware, Sendai, Japan, September 1997.

[8] Peter Canning, William Cook, Walter Hill, John Mitchell, and Walter Olthoff. F-bounded
quantification for object-oriented programming. In Conference on Functional Programming
Languages and Computer Architecture, pages 273-280, September 1989.

[9] Luca Cardelli. A semantics of multiple inheritance. Information and Computation, 76:138-164,
1988.

[10] Adriana B. Compagnoni and Benjamin C. Pierce. Higher-order intersection types and multiple
inheritance. Mathematical Structures in Computer Science, 6(5):469-501, October 1996.

[11] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance is not subtyping. In
Seventeenth ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
pages 125-135, San Francisco, January 1990.

[12] Karl Crary. Foundations for the implementation of higher-order subtyping. In 1997 ACM
SIGPLAN International Conference on Functional Programming, pages 125-135, Amsterdam,
June 1997.

[13] Allyn Dimock, Robert Müller, Franklyn Turbak, and J. B. Wells. Strongly typed flow-directed
representation transformations. In 1997 ACM SIGPLAN International Conference on Func-
tional Programming, pages 11-24, Amsterdam, June 1997.

13

[14] .Jc;>ii-Yves Girard. Une extension de ^interpretation de Gödel ä l'analyse, et son application ä
lY'limiiiiitioii de coupures dans l'analyse et la theorie des types. In J. E. Fenstad, editor, Pro-
(i i dings tif the Second Scandinavian Logic Symposium, pages 63-92. North-Holland Publishing
Co.. 1071.

[15] .hiMMi .1. Hickey. A semantics of objects in type theory. Unpublished manuscript, 1997.

[Hi] Martin llolmann and Benjamin Pierce. A unifying type-theoretic framework for objects. Jour-
nal nf I tmclional Programming, 5(4):593-635, October 1995.

[17] Samuel Kamin. Inheritance in Smalltalk-80: A denotational definition. In Fifteenth ACM
Sl(i.\< 7-.VK!PLAN Symposium on Principles of Programming Languages, pages 80-87, San

l)i«'»o. .la II nary 1988.

[IN] .lohn ('. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Trans-
(ii-Hims an Programming Languages and Systems, 10(3):470-502, July 1988.

[10] Benjamin ('. Pierce. Programming with Intersection Types and Bounded Polymorphism. PhD
thesis Carnegie Mellon University, School of Computer Science, Pittsburgh, Pennsylvania,
December 1991.

[20] Benjamin C. Pierce. Intersection types and bounded polymorphism. Mathematical Structures
in Computer Science, 7(2):129-193, April 1997.

[21] Benjamin C. Pierce. Personal communication, 1998.

[22] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-oriented
programming. Journal of Functional Programming, 4(2):207-247, April 1994.

[23] John C. Reynolds. Towards a theory of type structure. In Programming Symposium, volume 19
of Lecture Notes in Computer Science, pages 408-425, 1974.

[24] Ramesh Viswanathan. Full abstraction for first-order objects with recursive types and sub-
typing. In Thirteenth IEEE Symposium on Logic in Computer Science, Indianapolis, June
1998.

A The Coercion Calculus

types r ::= a | int | {£\ : T\,..., £n : Tn} \ T\ —> r2 \ Ma.r \ 3a.T
fia.T | Ti A T2

terms e ::= x \ i \ {£\ = e\,.. .,ln = en} \ el \ Xxir.e \ eie2 \
Aa.e | unpack [a, x] = e\ in e2\ ce

coercions c ::= id[r] | c\ o c2 \ {(-i : ci,..., £n : cn} \ c\ —> c2 \ Va.c \
3a.c | fxa.c \ apply T\ in Ma.r2 \ hide T\ in 3a.T2 \
fold[fia.r] | unfold[fia.r] \ (ci,c2) \ 7r,-[ri A r2] \
drop {£i\Ti,...,£m:Tm\ £m+1 : rm+1 ,...,£n-.Tn}

contexts T ::= e | r[a] | T[x : r]

14

r hT r type

r hT a type
(a er)

f \-T int type

r hT r,- type (for 1 < i < n) p hj Tl type r hj T2 type

T hT {£i : r,-[»'=1-n]} type r hT n -> r2 type

r[a] hT r type r[a] hT r type
r i w—7— (a £ r) , , - (a ^ r)
r rT VQf.r type v r rT 3a.r type v 7

r[o;] \-T T type /« ^ T, a appears

r hT /icif.r type \only positively in r

T hT rx type T \-T r2 type

r hT T\ A r2 type

T h> e : r

f hT i : T
(I» r hT i : int

r \-T e,- : r,- (for i < i < n) r hT e : {£, : r,[i=1-n1}

T hT {£i = ep=1~nl} : {£t : r^1"^} J. I j1 C -t- ^ ! 7~^'
:i < J < «)

r[x : ri] hT e : r2 T hT n type r hT ei : n -» r2 T hT e2 : r2
(a; ^ 1J

T \~T XxiTi.e : rj —)■ r2 T hT eie2 : r2

T[a] hT e : r r hT ei : 3g.r T[a][x : r] hT e2 : r>

T hT Aa.e : Va.r T \-T unpack [a, x] = e\ in e2 : r'

r hT c : ri =$■ r2 r l-T e : ri
T hT c e : r2

T hT c : ri => r2

T hT r type r hT cx : TX =>■ r2 T \-T c2 : r2

T hT irfFrl : r =» r
T3

r hT ci o c2 : ri => T3

T \-T Ci : n =» r[(for 1 < i < n) r hT C! : T[=> TI T \-T c2 : r2=> T'2

r hT {4 : c^1-"]} : {£ : T^-^ => {£{ : r/[«=i-»]} r hT Cl-► c2 : (n-► r2) =► (r{-► r£)

15

T[a] \-TC:T1^T2 T[a] Hr c : n =» r2

T hT Va.c : Va.ri =^> Va.T2 T hT 3a.c : 3a.rx =$■ 3a.T2

T[a] \-T c : T\ => r2 (a gT, a appears
T hT /j,a.c : /la.Ti =>• /ia.T2 \only positively in c

T hT \/a.r2 type T hT ri type
T hT apply T\ in Va.r2 : Va.r2 =£• r2[ri/a]

F hT 3a.r2 type T hT ri type
T hT /««'de ri in 3a.r2 : r2[ri/a] =^> 3ct.r2

T hT ^a.r type T hT /ia.r type
T hT /oW[//o;.r] : r[/j,a.T/a] =>• /za.r T hT unfold[/ia.r] : pLOt.T => r[pia.T/a]

r hT ci : r => ri r hT c2 : r =» r2 T hT rx A r2 type 1 2>
r hT (c1,c2) : r =$► ri Ar2 r hT ^ A T2] : n A r2 => r;

T hT Tj type (for 1 < i < n)

r hT drop{£i : T?=l~m}\li : r*'=m+1-n]} : {£, : r^1""]} =*► {£; : T^
=1
-^}

(TO < n)

The rules of Fc do not specify whether records are taken to be ordered or unordered. If records are
to be unordered, we use the same typing rules and take records and record types to be syntactically
identical to ones with permuted fields. All the results of this paper apply without modification in
either version of Fc. However, the efficiency advantages of the self-application semantics are likely
to be most telling in the version with ordered fields. If fields are unordered, one must either view
records as association lists of labels and data, or adopt a coercive interpretation of subtyping [5].
In either case, the efficiency advantages of self-application will stand, but will likely be dwarfed by
the costs of supporting unordered fields.

B The Object Encoding

Static Semantics and Translation Rules

Y\-ST type
FreeTypeVariables{r) C Y

T\-ST type

16

r hs ri < r2 ~> c

T\-ST type r \-s T! < T2 ~> cx r hs r2 < r3 ~> c2

r hs r < r ~* id[|r| T hs ri < r3 ~* c2 o ex

T \-s i~i < r[^ Ci (for 1 < i < n) Y \-s r,- type (for n < i < m)

rbft:r,[,=1-ml}<{4:rf1-nl}M
(TO > n)

r hs T[< TX -^ ci f hs r2 < r^ c2 T[a] hs ri < r2 ~» c
r hs TX -> r2 < T[-)• r^ ~*- ci ->■ c2 r hs Vct.rj < Va.r2 ~s- Va.c (a^T)

r[o] hs n < T[-V c- (for 1 < i < n) I>] hs r,- type (for TZ < % < TO) /W T, /? £ r;, TO > n,>
 r— : 7T-—-, a appears only

T hs fl A : TV^-H H as a < fl A : rf=1"^ [} as a ^ \positively in r,-
Ha. 3/3. irf[/?] A ({A : id[ß] -► c;[i=1-n]} o

drop{4:/3-Hr,-,r,'=1-'11

A : /? ■
i[j'=?i+l...m]

})

r[a] hs r,- type (for 1 < i < n)

r hs !{| A : T,-[*'=1-n] |} as a < fl £ : r8-t
4=1-"] Jasa^

/o/d[r] o

Aide r* in 3/3. /? A {A : /? -> |T;|[r/a][i=1""]} o
(irf[T*],un/oW[r*]>

where r = |{| A : rj''=1-n] ft as a|
andr* = |!-{]A:ri[i=1-n]}asa|

(«^r,/3^r4;

rh,e:r-v>e'

r r-s e : TX ^ e' rhsri<r2

rhse:T2-^ce' T hs x : r ~>- a; 0» r ho i : int ^ i

T hs ej : Tj -N-» ej (for 1 < i < n)

r hs {A = e^1"^} : {A : r,-^1-"]} ~> {A = e^'=1"n]}

rhse:{A:rJ'=1-"]}-^e/

T I-s e.£j : Tj ~s- e'.^j (1 < j < n)

17

T[x : Tj] hse:r2^e' T\-s n type r hg et : TJ -4 r2 -^ ej T hs e2 : r2 ^> e'2

T hs Xx-.Ti.e : ri -» r2 ^ A*:|ri|.e' F hs exe2 : r2 ~» eie'2

r[a] hs e : r ^ e' r hs e : Va.r' ^ e' T hs r type
r hs Aa.e : Va.r ^ Aa.e' (ö ^ j T hs e[r] : r'[r/o] ^ c'[|r|]

r[a] hg e,- : !fl A' : r,-^1"^ & as a -> rf [(fl l," : r,-^1""] & as a)/a] ^ e\ (a ^ r j < ^ < re)

r hs fl A' = c,-^1-"] ft : !{| A' : r,-t*=1-n] & as a ^
(/bW[|!{| 4 : r,-!-1-»] [} as a\]){£ = e^=1^}

T \-s e : ^ ti-.T^1"^^ as a ^e'

T\-Se<£i: r,-[({| £,- : r^1"^ ft as a)/a] ^
unpack [ß, x] = im/oW[r] e' m (7r2[r'] x).£ (7Ti[r'] x)

where T'= ß A{£i : ß-> |r,-|[r/a][,'=1-n]}
andr= |-Q 4 : r^=1-n] |} aso|

T hs e2 : !fl A' : T^
1
"^ ft as a -> r,[(-fl I,- : r^1"^ & as a)/a] ^ e2

r h5 ei • ^ fc: e2 : !fl £ : T^i=1"^ |} as a ~>
/e* a = un/oW[|!fl A : rj-i=1~n] ft as a|] ei
m
/oW[|!flA-:r^-"^asa|]

{l<i<n,ßg n\

(l<j<n,x gei)

18

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

